Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Biomedicines ; 11(12)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38137558

RESUMO

Autologous fat grafting is the gold standard for treatment in patients with soft-tissue defects. However, the technique has a major limitation of unpredictable fat resorption due to insufficient blood supply in the initial phase after transplantation. To overcome this problem, we investigated the capability of a medical-grade poly L-lactide-co-poly ε-caprolactone (PLCL) scaffold to support adipose tissue and vascular regeneration. Deploying FDM 3D-printing, we produced a bioresorbable porous scaffold with interconnected pore networks to facilitate nutrient and oxygen diffusion. The compressive modulus of printed scaffold mimicked the mechanical properties of native adipose tissue. In vitro assays demonstrated that PLCL scaffolds or their degradation products supported differentiation of preadipocytes into viable mature adipocytes under appropriate induction. Interestingly, the chorioallantoic membrane assay revealed vascular invasion inside the porous scaffold, which represented a guiding structure for ingrowing blood vessels. Then, lipoaspirate-seeded scaffolds were transplanted subcutaneously into the dorsal region of immunocompetent rats (n = 16) for 1 or 2 months. The volume of adipose tissue was maintained inside the scaffold over time. Histomorphometric evaluation discovered small- and normal-sized perilipin+ adipocytes (no hypertrophy) classically organized into lobular structures inside the scaffold. Adipose tissue was surrounded by discrete layers of fibrous connective tissue associated with CD68+ macrophage patches around the scaffold filaments. Adipocyte viability, assessed via TUNEL staining, was sustained by the presence of a high number of CD31-positive vessels inside the scaffold, confirming the CAM results. Overall, our study provides proof that 3D-printed PLCL scaffolds can be used to improve fat graft volume preservation and vascularization, paving the way for new therapeutic options for soft-tissue defects.

3.
J Clin Invest ; 133(19)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37561584

RESUMO

Biological aging can be described as accumulative, prolonged metabolic stress and is the major risk factor for cognitive decline and Alzheimer's disease (AD). Recently, we identified and described a quinone reductase 2 (QR2) pathway in the brain, in which QR2 acts as a removable memory constraint and metabolic buffer within neurons. QR2 becomes overexpressed with age, and it is possibly a novel contributing factor to age-related metabolic stress and cognitive deficit. We found that, in human cells, genetic removal of QR2 produced a shift in the proteome opposing that found in AD brains while simultaneously reducing oxidative stress. We therefore created highly specific QR2 inhibitors (QR2is) to enable evaluation of chronic QR2 inhibition as a means to reduce biological age-related metabolic stress and cognitive decline. QR2is replicated results obtained by genetic removal of QR2, while local QR2i microinjection improved hippocampal and cortical-dependent learning in rats and mice. Continuous consumption of QR2is in drinking water improved cognition and reduced pathology in the brains of AD-model mice (5xFAD), with a noticeable between-sex effect on treatment duration. These results demonstrate the importance of QR2 activity and pathway function in the healthy and neurodegenerative brain and what we believe to be the great therapeutic potential of QR2is as first-in-class drugs.


Assuntos
Doença de Alzheimer , Quinona Redutases , Animais , Humanos , Camundongos , Ratos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Hipocampo/metabolismo , Estresse Oxidativo , Quinona Redutases/antagonistas & inibidores , Quinona Redutases/genética , Quinona Redutases/metabolismo , Estresse Fisiológico
5.
J Clin Immunol ; 42(7): 1461-1472, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35737255

RESUMO

As protein-losing enteropathy (PLE) can lead to hypogammaglobulinemia and lymphopenia, and since common variable immunodeficiency (CVID) is associated with digestive complications, we wondered if (1) PLE could occur during CVID and (2) specific features could help determine whether a patient with antibody deficiency has CVID, PLE, or both. Eligible patients were thus classified in 3 groups: CVID + PLE (n = 8), CVID-only (= 19), and PLE-only (n = 13). PLE was diagnosed using fecal clearance of α1-antitrypsin or 111In-labeled albumin. Immunoglobulin (Ig) A, G, and M, naive/memory B and T cell subsets were compared between each group. CVID + PLE patients had multiple causes of PLE: duodenal villous atrophy (5/8), nodular follicular hyperplasia (4/8), inflammatory bowel disease-like (4/8), portal hypertension (4/8), giardiasis (3/8), and pernicious anemia (1/8). Compared to the CVID-only group, CVID + PLE patients had similar serum Ig levels, B cell subset counts, but lower naive T cell proportion and IgG replacement efficiency index. Compared to the CVID-only group, PLE-only patients did not develop infections but had higher serum levels of IgG (p = 0.03), IgA (p < 0.0001), and switched memory B cells (p = 0.001); and decreased naive T cells (CD4+: p = 0.005; CD8+: p < 0.0001). Compared to the PLE-only group, CVID + PLE patients had higher infection rates (p = 0.0003), and lower serum Ig (especially IgA: p < 0.001) and switched memory B cells levels. In conclusion, PLE can occur during CVID and requires higher IgG replacement therapy dosage. PLE can also mimic CVID and is associated with milder immunological abnormalities, notably mildly decreased to normal serum IgA and switched memory B cell levels.


Assuntos
Imunodeficiência de Variável Comum , Enteropatias Perdedoras de Proteínas , Humanos , Imunodeficiência de Variável Comum/complicações , Imunodeficiência de Variável Comum/diagnóstico , Enteropatias Perdedoras de Proteínas/etiologia , Enteropatias Perdedoras de Proteínas/complicações , Diagnóstico Diferencial , Imunoglobulina A , Imunoglobulina G
6.
Int J Mol Sci ; 23(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35408789

RESUMO

Tumor cells evolve in a complex and heterogeneous environment composed of different cell types and an extracellular matrix. Current 2D culture methods are very limited in their ability to mimic the cancer cell environment. In recent years, various 3D models of cancer cells have been developed, notably in the form of spheroids/organoids, using scaffold or cancer-on-chip devices. However, these models have the disadvantage of not being able to precisely control the organization of multiple cell types in complex architecture and are sometimes not very reproducible in their production, and this is especially true for spheroids. Three-dimensional bioprinting can produce complex, multi-cellular, and reproducible constructs in which the matrix composition and rigidity can be adapted locally or globally to the tumor model studied. For these reasons, 3D bioprinting seems to be the technique of choice to mimic the tumor microenvironment in vivo as closely as possible. In this review, we discuss different 3D-bioprinting technologies, including bioinks and crosslinkers that can be used for in vitro cancer models and the techniques used to study cells grown in hydrogels; finally, we provide some applications of bioprinted cancer models.


Assuntos
Bioimpressão , Neoplasias , Bioimpressão/métodos , Humanos , Hidrogéis , Medicina de Precisão , Impressão Tridimensional , Engenharia Tecidual/métodos , Tecidos Suporte , Microambiente Tumoral
7.
J Stomatol Oral Maxillofac Surg ; 123(5): e425-e432, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35134590

RESUMO

Oral mucosal melanoma (OMM) is the subject of few studies, resulting in a lack of understanding. The aim of this study is to review the current literature on OMM. The term searched was "oral mucosal melanoma" between 01/01/2000 and 03/15/2021 in the PubMed Database (MEDLINE). Patients presenting with OMM and treated in our center between January 2009 and January 2020 were included in a case series. Demographics, location, risk factors, genetic mutations, treatment performed, and overall survival (OS) rates were evaluated. The PubMed database search yielded a total of 513 results, thirty-eight articles were finally included, which amounted to 2230 cases of OMM. 13 patients were included in the case series. A male-to-female ratio of 1.28:1.00 was found with a mean age at first diagnosis of 58.2 years old. Hard palate (1060 cases) and then gingiva (794 cases) were the two main locations. No risk factors could be identified. OMM were staged III or IV at diagnosis. Mutations were described as such: KIT in 14.6% of cases, BRAF in 7%, and NRAS in 5.6%. Treatment protocols varied but radical surgery was the cornerstone treatment associated with adjuvant therapies. Immunotherapy has not been evaluated for OMM. OS rates were 43.4% at 3 years, 33.1% at 5 year and 15.4% at 10 years. OMM show distinct features from cutaneous melanoma (CM): typical locations, no identified risk factors, different mutations profile, worse prognosis with advanced stage at diagnosis. Targeted therapies are still underused compared to CM.


Assuntos
Melanoma , Neoplasias Bucais , Neoplasias Cutâneas , Feminino , Humanos , Masculino , Melanoma/diagnóstico , Melanoma/epidemiologia , Melanoma/terapia , Pessoa de Meia-Idade , Neoplasias Bucais/diagnóstico , Neoplasias Bucais/epidemiologia , Neoplasias Bucais/terapia , Proteínas Proto-Oncogênicas B-raf/genética , Estudos Retrospectivos
8.
RNA Biol ; 19(1): 26-43, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34895045

RESUMO

Igf2bp1 is an oncofetal RNA binding protein whose expression in numerous types of cancers is associated with upregulation of key pro-oncogenic RNAs, poor prognosis, and reduced survival. Importantly, Igf2bp1 synergizes with mutations in Kras to enhance signalling and oncogenic activity, suggesting that molecules inhibiting Igf2bp1 could have therapeutic potential. Here, we isolate a small molecule that interacts with a hydrophobic surface at the boundary of Igf2bp1 KH3 and KH4 domains, and inhibits binding to Kras RNA. In cells, the compound reduces the level of Kras and other Igf2bp1 mRNA targets, lowers Kras protein, and inhibits downstream signalling, wound healing, and growth in soft agar, all in the absence of any toxicity. This work presents an avenue for improving the prognosis of Igf2bp1-expressing tumours in lung, and potentially other, cancer(s).


Assuntos
Antineoplásicos/farmacologia , Carcinogênese/efeitos dos fármacos , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas de Ligação a RNA/antagonistas & inibidores , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Ensaios de Triagem em Larga Escala , Humanos , Ligação Proteica/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Mol Metab ; 55: 101410, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863941

RESUMO

OBJECTIVE: Long-term treatment with tyrosine kinase inhibitors (TKI) represents an effective cure for chronic myeloid leukemia (CML) patients and discontinuation of TKI therapy is now proposed to patient with deep molecular responses. However, evidence demonstrating that TKI are unable to fully eradicate dormant leukemic stem cells (LSC) indicate that new therapeutic strategies are needed to control LSC and to prevent relapse. In this study we investigated the metabolic pathways responsible for CML surviving to imatinib exposure and its potential therapeutic utility to improve the efficacy of TKI against stem-like CML cells. METHODS: Using complementary cell-based techniques, metabolism was characterized in a large panel of BCR-ABL+ cell lines as well as primary CD34+ stem-like cells from CML patients exposed to TKI and L-Asparaginases. Colony forming cell (CFC) assay and flow cytometry were used to identify CML progenitor and stem like-cells. Preclinical models of leukemia dormancy were used to test the effect of treatments. RESULTS: Although TKI suppressed glycolysis, compensatory glutamine-dependent mitochondrial oxidation supported ATP synthesis and CML cell survival. Glutamine metabolism was inhibited by L-asparaginases such as Kidrolase or Erwinase without inducing predominant CML cell death. However, clinically relevant concentrations of TKI render CML cells susceptible to Kidrolase. The combination of TKI with Lasparaginase reactivates the intinsic apoptotic pathway leading to efficient CML cell death. CONCLUSION: Targeting glutamine metabolism with the FDA-approved drug, Kidrolase in combination with TKI that suppress glycolysis represents an effective and widely applicable therapeutic strategy for eradicating stem-like CML cells.


Assuntos
Mesilato de Imatinib/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Células-Tronco Neoplásicas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Asparaginase/metabolismo , Asparaginase/farmacologia , Asparagina/antagonistas & inibidores , Asparagina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Mesilato de Imatinib/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo
10.
Cancers (Basel) ; 13(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34944972

RESUMO

Resistant acute myeloid leukemia (AML) exhibits mitochondrial energy metabolism changes compared to newly diagnosed AML. This phenotype is often observed by evaluating the mitochondrial oxygen consumption of blasts, but most of the oximetry protocols were established from leukemia cell lines without validation on primary leukemia cells. Moreover, the cultures and storage conditions of blasts freshly extracted from patient blood or bone marrow cause stress, which must be evaluated before determining oxidative phosphorylation (OXPHOS). Herein, we evaluated different conditions to measure the oxygen consumption of blasts using extracellular flow analyzers. We first determined the minimum number of blasts required to measure OXPHOS. Next, we compared the OXPHOS of blasts cultured for 3 h and 18 h after collection and found that to maintain metabolic organization for 18 h, cytokine supplementation is necessary. Cytokines are also needed when measuring OXPHOS in cryopreserved, thawed and recultured blasts. Next, the concentrations of respiratory chain inhibitors and uncoupler FCCP were established. We found that the FCCP concentration required to reach the maximal respiration of blasts varied depending on the patient sample analyzed. These protocols provided can be used in future clinical studies to evaluate OXPHOS as a biomarker and assess the efficacy of treatments targeting mitochondria.

11.
Cell Tissue Bank ; 22(3): 511-518, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33523333

RESUMO

Background The COVID-19 pandemic has altered organ and tissue donations as well as transplantation practices. SARS-CoV-2 serological tests could help in the selection of donors. We assessed COVID-19 seroprevalence in a population of tissue donors, at the onset of the outbreak in France, before systematic screening of donors for SARS-CoV-2 RNA. Methods 235 tissue donors at the Lille Tissue Bank between November 1, 2019 and March 16, 2020 were included. Archived serum samples were tested for SARS-CoV-2 antibodies using two FDA-approved kits. Results Most donors were at higher risks for severe COVID-19 illness including age over 65 years (142/235) and/or presence of co-morbidities (141/235). According to the COVID-19 risk assessment of transmission, 183 out of 235 tissue donors presented with a low risk level and 52 donors with an intermediate risk level of donor derived infection. Four out of the 235 (1.7%) tested specimens were positive for anti-SARS-CoV-2 antibodies: 2 donors with anti-N protein IgG and 2 other donors with anti-S protein total Ig. None of them had both type of antibodies. Conclusion Regarding the seroprevalence among tissue donors, we concluded that the transmission probability to recipient via tissue products was very low at the beginning of the outbreak.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/epidemiologia , COVID-19/imunologia , Controle de Doenças Transmissíveis , SARS-CoV-2/imunologia , Estudos Soroepidemiológicos , Doadores de Tecidos , Idoso , Feminino , França/epidemiologia , Humanos , Masculino , Pandemias , Estudos Retrospectivos
12.
Burns ; 47(2): 387-396, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32788056

RESUMO

BACKGROUND: Microbial contamination of human skin allografts is a frequent cause of allograft discard. Our purpose was to evaluate the discard rate of skin bank contaminated allografts and specific procedures used to reduce allograft contamination without affecting safety. METHODS: We conducted at the Lille Tissue Bank a retrospective study of all deceased donors (n = 104) harvested from January 2018 to December 2018. Skin procurement was split into 3 zones: the back of the body and the two legs that were processed separately. It represented 433 cryopreserved skin allograft pouches of approximatively 500 cm² each. Donors were almost equally split between brain-dead (53%, 55/104) and cadaveric (47%, 49/104) donors. RESULTS: Out of all donors, 42 (40.5%) had at least one sampling zone with a positive microbiological test resulting in 106 (24%) contaminated skin pouches. The contamination rate did not vary according to the harvested zone or type of donor. Traumatic deaths showed significantly less contamination rates than other death types (p < 0.05). Contamination rate decreased with time spent in the antibiotic solution. The risk of having contaminated allografts was five-fold higher when the skin spent less than 96 h in the antibiotic cocktail (p < 0.05). According to our validation protocol, most donors (32/42, 76%) had skin allografts contaminated with bacteria (mainly Staphylococcus spp) compatible with clinical use. No recipient infection was recorded as a result of skin graft contaminated with saprophytic or non-pathogenic germs. By harvesting 3 separate zones per donor, the total surface area for clinical use increased by 53% for contaminated donors. Overall, the proportion of contamination-related discarded allografts was 3.2% (14/433 of pouches). CONCLUSION: Few simple pragmatic measures (including skin incubation in the antibiotic bath for at least 96 h at 4 °C, splitting the skin harvesting areas to minimize the risk of cross-infection and clinical use of allografts contaminated with saprophytic and non-pathogenic germs) can reduce the discard rate of contaminated allografts without affecting clinical safety.


Assuntos
Queimaduras , Aloenxertos , Antibacterianos , Humanos , Estudos Retrospectivos , Transplante Homólogo
13.
Biology (Basel) ; 9(12)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339398

RESUMO

Metabolic reprogramming is crucial to respond to cancer cell requirements during tumor development. In the last decade, metabolic alterations have been shown to modulate cancer cells' sensitivity to chemotherapeutic agents including conventional and targeted therapies. Recently, it became apparent that changes in lipid metabolism represent important mediators of resistance to anticancer agents. In this review, we highlight changes in lipid metabolism associated with therapy resistance, their significance and how dysregulated lipid metabolism could be exploited to overcome anticancer drug resistance.

14.
FASEB J ; 34(10): 13106-13124, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32808332

RESUMO

Mitochondrial metabolism must constantly adapt to stress conditions in order to maintain bioenergetic levels related to cellular functions. This absence of proper adaptation can be seen in a wide array of conditions, including cancer. Metabolic adaptation calls on mitochondrial function and draws on the mitochondrial reserve to meet increasing needs. Among mitochondrial respiratory parameters, the spare respiratory capacity (SRC) represents a particularly robust functional parameter to evaluate mitochondrial reserve. We provide an overview of potential SRC mechanisms and regulation with a focus on its particular significance in cancer cells.


Assuntos
Mitocôndrias/metabolismo , Neoplasias/metabolismo , Animais , Respiração Celular , Humanos , Consumo de Oxigênio
15.
Sci Rep ; 10(1): 11779, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678237

RESUMO

Tissue engineering chambers (TECs) bring great hope in regenerative medicine as they allow the growth of adipose tissue for soft tissue reconstruction. To date, a wide range of TEC prototypes are available with different conceptions and volumes. Here, we addressed the influence of TEC design on fat flap growth in vivo as well as the possibility of using bioresorbable polymers for optimum TEC conception. In rats, adipose tissue growth is quicker under perforated TEC printed in polylactic acid than non-perforated ones (growth difference 3 to 5 times greater within 90 days). Histological analysis reveals the presence of viable adipocytes under a moderate (less than 15% of the flap volume) fibrous capsule infiltrated with CD68+ inflammatory cells. CD31-positive vascular cells are more abundant at the peripheral zone than in the central part of the fat flap. Cells in the TEC exhibit a specific metabolic profile of functional adipocytes identified by 1H-NMR. Regardless of the percentage of TEC porosity, the presence of a flat base allowed the growth of a larger fat volume (p < 0.05) as evidenced by MRI images. In pigs, bioresorbable TEC in poly[1,4-dioxane-2,5-dione] (polyglycolic acid) PURASORB PGS allows fat flap growth up to 75 000 mm3 at day 90, (corresponding to more than a 140% volume increase) while at the same time the TEC is largely resorbed. No systemic inflammatory response was observed. Histologically, the expansion of adipose tissue resulted mainly from an increase in the number of adipocytes rather than cell hypertrophy. Adipose tissue is surrounded by perfused blood vessels and encased in a thin fibrous connective tissue containing patches of CD163+ inflammatory cells. Our large preclinical evaluation defined the appropriate design for 3D-printable bioresorbable TECs and thus opens perspectives for further clinical applications.


Assuntos
Implantes Absorvíveis , Tecido Adiposo/fisiologia , Materiais Biocompatíveis , Impressão Tridimensional , Engenharia Tecidual , Fenômenos Químicos , Ácido Poliglicólico , Análise Espectral , Retalhos Cirúrgicos , Técnicas de Cultura de Tecidos , Engenharia Tecidual/métodos
17.
Int Wound J ; 16(6): 1354-1364, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31429202

RESUMO

The use of split-thickness skin autografts (STSA) with dermal substitutes is the gold standard treatment for third-degree burn patients. In this article, we tested whether cryopreserved amniotic membranes could be beneficial to the current treatments for full-thickness burns. Swines were subjected to standardised full-thickness burn injuries, and then were randomly assigned to treatments: (a) STSA alone; (b) STSA associated with the dermal substitute, Matriderm; (c) STSA plus human amniotic membrane (HAM); and (d) STSA associated with Matriderm plus HAM. Clinical and histological assessments were performed over time. We also reported the clinical use of HAM in one patient. The addition of HAM to classic treatments reduced scar contraction. In the presence of HAM, skin wound healing displayed high elasticity and histological examination showed a dense network of long elastic fibres. The presence of HAM increased dermal neovascularization, but no effect was observed on the recruitment of inflammatory cells to the wound. Moreover, the use of HAM with classical treatments in one human patient revealed a clear benefit in terms of elasticity. These results give initial evidence to consider the clinical application of HAM to avoid post-burn contractures and therefore facilitate functional recovery after deep burn injury.


Assuntos
Âmnio , Queimaduras/terapia , Cicatrização , Adulto , Animais , Cicatriz/fisiopatologia , Colágeno/metabolismo , Criopreservação , Derme/metabolismo , Elasticidade/fisiologia , Elastina , Fibroblastos/metabolismo , Humanos , Masculino , Modelos Animais , Neovascularização Fisiológica , Pele Artificial , Suínos
18.
Int J Med Sci ; 16(7): 931-938, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31341406

RESUMO

The diagnosis of mitochondrial diseases is a real challenge because of the vast clinical and genetic heterogeneity. Classically, the clinical examination and genetic analysis must be completed by several biochemical assays to confirm the diagnosis of mitochondrial disease. Here, we tested the validity of microscale XF technology in measuring oxygen consumption in human skin fibroblasts isolated from 5 pediatric patients with heterogeneous mitochondrial disorders. We first set up the protocol conditions to allow the determination of respiratory parameters including respiration associated with ATP production, proton leak, maximal respiration, and spare respiratory capacity with reproducibility and repeatability. Maximum respiration and spare capacity were the only parameters decreased in patients irrespective of the type of OXPHOS deficiency. These results were confirmed by high-resolution oxygraphy, the reference method to measure cellular respiration. Given the fact that microscale XF technology allows fast, automated and standardized measurements, we propose to use microscale oxygraphy among the first-line methods to screen OXPHOS deficiencies.


Assuntos
Fibroblastos/patologia , Mitocôndrias/patologia , Doenças Mitocondriais/diagnóstico , Fosforilação Oxidativa , Oxigênio/análise , Adolescente , Biópsia , Técnicas de Cultura de Células , Linhagem Celular , Estudos de Viabilidade , Feminino , Fibroblastos/citologia , Humanos , Lactente , Recém-Nascido , Masculino , Doenças Mitocondriais/patologia , Oxigênio/metabolismo , Consumo de Oxigênio , Reprodutibilidade dos Testes , Estudos Retrospectivos , Pele/citologia , Pele/patologia
19.
Cell Chem Biol ; 26(1): 98-108.e5, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30449673

RESUMO

The c-Jun NH2-terminal kinase (JNK) signaling pathway is central to the cell response to stress, inflammatory signals, and toxins. While selective inhibitors are known for JNKs and for various upstream MAP3Ks, no selective inhibitor is reported for MKK7--one of two direct MAP2Ks that activate JNK. Here, using covalent virtual screening, we identify selective MKK7 covalent inhibitors. We optimized these compounds to low-micromolar inhibitors of JNK phosphorylation in cells. The crystal structure of a lead compound bound to MKK7 demonstrated that the binding mode was correctly predicted by docking. We asserted the selectivity of our inhibitors on a proteomic level and against a panel of 76 kinases, and validated an on-target effect using knockout cell lines. Lastly, we show that the inhibitors block activation of primary mouse B cells by lipopolysaccharide. These MKK7 tool compounds will enable better investigation of JNK signaling and may serve as starting points for therapeutics.


Assuntos
MAP Quinase Quinase 7/antagonistas & inibidores , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Células 3T3 , Animais , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Humanos , MAP Quinase Quinase 7/genética , MAP Quinase Quinase 7/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibidores de Proteínas Quinases/química
20.
ChemSusChem ; 9(13): 1586-90, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27319978

RESUMO

A straightforward phosgene-free synthesis of aromatic isocyanates and diisocyanates is disclosed. Theoretical investigations suggested that the insertion of carbon dioxide (CO2 ) by dialkyltin(IV) dialkoxides could be used to convert aromatic amines into aromatic mono- and dicarbamates. Here we show, that methyl phenylcarbamate (MPC) from aniline using organotin(IV) dimethoxide and CO2 can be formed in high yield of up to 92 %, experimentally corroborating the predictions of density functional theory (DFT) calculations. MPC was then separated from the tin oxide residues and converted into phenyl isocyanate. Furthermore, organotin(IV) alkoxides could be regenerated from the tin oxide residues and reused, paving the way for a continuous industrial process. Extension of the scope to the synthesis of diurethanes from toluene 2,4-diamine and 4,4'-methylenedianiline could potentially allow the efficient production of industrially relevant diisocyanates.


Assuntos
Álcoois/química , Dióxido de Carbono/química , Indústrias , Isocianatos/química , Compostos Orgânicos de Estanho/química , Fenilcarbamatos/síntese química , Técnicas de Química Sintética , Oxigênio/química , Fenilcarbamatos/química , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...